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Abstract 

Radiofrequency (RF) is affected by weather conditions. The performance of sensors utilising RF 

can be significantly affected by the volatile weather patterns in Singapore. In this study, we 

analysed historical data of Singapore's weather to infer patterns and understand rainfall and 

temperature trends that affect Singapore. Using the XGBoost algorithm, we developed a 

Machine Learning (ML) Model that can predict the amount of daily rainfall using historical data. 

The predictions can be used to predict the extent of RF attenuation that sensors could face and be 

used to aid in developing mitigating measures to optimise sensor performance. 

1. INTRODUCTION 

1.1 Background & Objective 

RF play a significant role in electronic warfare (EW), including electronic warfare support (ES), 

electronic attack (EA) and electronic protection (EP). From identifying and interfering with 

enemy forces to communicating with friendly forces, most—if not all—sensors used in EW 

utilise RF signals to obtain and transmit the necessary information. However, attenuation of RF 

signals in dense atmospheric conditions (e.g. rain, hazy, fog) severely impact the effectiveness of 

sensors that rely on RF signals to perform their tasks. As climate change progresses, Singapore's 

weather patterns have become even more volatile, making it even more important to accurately 

predict unfavourable weather and the subsequent impacts on sensor performance. Additionally, 

there is a need to analyse Singapore's weather patterns and assess the impacts of different 

weather conditions on RF. This project aims to use machine learning to make long-term 

predictions of Singapore’s weather and to predict the signal attenuation such weather could pose 

to radiofrequencies. (Refer to Appendix 1 for the Fundamentals of Radiofrequency) 

1.2 Impact of Weather Conditions on Radiofrequency 

Air particles in the atmosphere cause a phenomenon known as atmospheric attenuation, where 

radio waves experience power loss due to absorption and scattering by particles in the 

transmission path. This is particularly prominent in Singapore as it is a tropical country, giving it 

high temperatures, high humidity and high annual precipitation. Singapore typically experiences 

sunny with high humidity, rainy and hazy weather. 

In sunny weather, the main factors affecting atmospheric attenuation are temperature and 

humidity. While temperature has no direct impact on signal attenuation, humidity has a negative 

impact on signal strength. The higher the relative humidity, the more water vapour particles are 

present in the air, increasing signal attenuation via scattering and absorption. Scattering is the 
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redirection of electromagnetic (EM) waves by particles with diameters comparable to their 

wavelengths via refraction against and in the particle. Absorption is the transfer of energy from 

the waves to the particles as they pass through, resulting in power loss. High levels of EM 

attenuation are observed particularly at higher frequencies, especially above 10GHz [1]. 

Singapore also faces near-annual hazy seasons as air 

pollutants produced in forest fires in Indonesia are 

carried by wind to Singapore, exacerbated by the 

Southwest Monsoon from June to September [3]. 

Haze heightens the concentration of smoke and dust 

particles in the atmosphere, among others, thus 

increasing the attenuation of EM waves during hazy 

seasons in accordance with the size and concentration 

of particles. Though power loss due to smoke is 

generally frequency-dependent, attenuation is rather 

high at all frequencies [4] [5] [6]. 

 

Fig. 1.2.1 Rain-induced attenuation [2] 

1.3 Impact of Weather on Sensors' Performance 

The impact of weather on sensors’ performance varies greatly depending on the types of sensors, 

such as radar and electro-optical sensors, as different sensors use different RF ranges for 

transmission. 

Precipitation (Rain, snow, hail) 

Most RADARs used in EW use frequencies of 2-18GHz (e.g. 9GHz waves are used by maritime 

navigation radars). RADAR sensors can operate beyond adverse weather conditions but still 

require the assistance of a perception system to improve decision robustness. Such systems are 

not significantly attenuated at short distances, but rain backscattering or rain clutter can decrease 

 

Fig. 1.2.2 Logarithmic plot of 

calculated values of attenuation by 

rain in dB/km [8] 

Finally, heavy rain is the greatest cause of RF attenuation 

in Singapore, since the country lacks snow and tropical 

cyclones. The size and abundance of raindrops during 

heavy rains and thunderstorms significantly increases RF 

attenuation, as they absorb and scatter waves much more 

in the transmission link; rain can also cause depolarisation 

of signals. At 20°C, rain-induced attenuation of radio 

waves tends to be more severe in frequencies around 35-

95GHz but is negligible in frequencies less than or equal 

to 10GHz [7]. Attenuation increases with rainfall rates; in 

Singapore, rainfall rates span from 0.5mm/h to 32mm/h 

on particularly rainy days [8], resulting in attenuation of a 

range of 2-11dB/km (Fig. 1.2.2). 
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the maximum range of detectability [9] [10], as well as result in false alarms [11]. 

Supplementing perception systems can include GNSS systems for accurate positioning and 

orientation information [11]. Adaptive sensor fusion algorithms can be applied to dynamically 

adjust the weighting and integration of sensor data based on the current environmental conditions 

and sensor performance. This can help mitigate the effects of adverse weather on the overall 

perception system.  

Millimetre wave (mmWave) communication occurs within the range of 30GHz to 300GHz. 

Since signal attenuation becomes more severe at extremely high frequencies (i.e. more than 

10GHz), the high frequencies of mmWaves limit them to travelling very short distances and 

prevent them from penetrating buildings and objects [12]. This, coupled with Singapore’s 

frequent intense rainstorms, increases mmWave attenuation and decreases their range [1]. 

Conversely, frequencies below 10GHz experience lower signal attenuation due to rainfall. 

According to Mie’s solution to Maxwell’s equation, any transmission wavelength (𝜆) that is 

similar or smaller to the droplet diameter of 6 mm will be subject to Mie scattering [13]. LiDARs 

transmitting in the 905 nm and 1550 nm wavebands will be heavily affected by Mie scattering 

from rain at longer distances [14]. However, within the range usually required for rangefinders 

on AVs, LiDAR susceptibility to rain is not as noticeable until more severe rain rates occur [15]. 

 

Fig. 1.3.1 Variation of the signal/noise ratio as a function of the rain rate and distance between 

LiDAR and target for a rain droplet radius equal to 3 mm [15] 

Fig. 1.3.2 Range degradation curves for 2 mm/hrs and 25 mm/hrs rain conditions [14] 

Temperature and Humidity 

Relative humidity has negative correlation with signal strength. As relative humidity increases, 

RF signals have a weaker signal strength and vice versa. Higher humidity results in higher 

concentration of water vapour in the air. When RF signals propagate through the air, it is likely 

that more water vapour in the air absorbs energy from the waves, weakening them further [16]. 
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Hence, when Singapore's weather is more humid, signal strength of RF-based systems is likely to 

be weakened. Temperature, on the other hand, has little to no effect on RF signals. 

Fog and other Atmospheric Gases 

In contrast to vision-based and laser scanners, RADAR sensors are robust against environmental 

conditions, such as fog or other changes in luminosity [17]. RADAR-based object detection is 

less affected by the weather, especially in foggy scenarios, where recognition from data from 

optical sensors such as cameras and LiDAR fails at a very short-range depending on the fog 

density; hence, RADAR is shown to be a good solution for dense fog perception [18]. 

LiDAR systems and cameras, whose operating wavelengths are less than fog particles, are 

subject to Mie scattering [11]. In addition, near-infrared signals are also subject to significant 

attenuation by fog [19]. With air-light interference (the scattering of light from the interference 

of particles), objects within the immediate vicinity of the light source are impossible to perceive 

by light-based sensors such as cameras [11]. In addition, the higher the reflectivity of an object, 

the darker it would appear in fog [20]. Evidently, there are many significant factors that affect 

the performance of electro-optical sensors in fog, and these devices are best supplemented by 

other types of sensors, such as RADAR, to mitigate these shortcomings. 

At higher frequencies, there is a greater loss of energy of the millimetre waves as they propagate 

through the atmosphere, due to interactions between the waves and gas molecules like oxygen, 

nitrogen dioxide and water vapour in the troposphere. The loss of energy in millimetre waves 

causes attenuation of the signal [21]. The attenuation varies with the amount of water vapour 

present in the atmosphere [12]. 

 

Fig. 1.3.3 Specific attenuation due to different atmospheric gases [21] 
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2. METHODOLOGY 

2.1 Data Analytics of Past Weather across different regions of Singapore 

As weather conditions significantly impact sensor performance, it is crucial to gain a better 

understanding of weather patterns in Singapore to complement EW technology and enhance 

Singapore's defence capabilities. To achieve this, we sought historical hourly data to analyse 

climate trends, and to make a predictive model for future weather. This understanding will 

enable defence technology to prepare for and adapt to weather changes that may affect sensor 

performance. 

To achieve this, we used the Open-Meteo free weather API [22], which provides a python script 

(Refer to Appendix 2A for the script), among other methods, to download weather data. To 

represent the North, South, East, West and Central regions of Singapore, we used data from 

Sembawang, Sentosa, Changi, Jurong West and Ang Mo Kio Park respectively. These five 

regions would set the basis for a more comprehensive understanding on how varying weather 

conditions in one region in Singapore might affect the other. Furthermore, we chose a range of 

January 1991 to November 2024 to have a well-rounded understanding of historical trends. The 

variables in the data used are the temperature, relative humidity, dew point, rain, surface 

pressure, cloud cover, wind speed, and wind direction, as these factors appear to be the most 

relevant to weather conditions in Singapore’s tropical climate. 

Next, we performed a detailed analysis of the data. Using Power BI, we plotted graphs of the 

total monthly rainfall and the mean monthly temperature for each of the five different locations 

based on the datasets obtained. This allowed us to visualise trends and variations in rainfall and 

temperature across the regions over the 43-year period. 

Moreover, the historical total hourly rainfall data of the five locations was analysed, to identify 

rainfall trends across years in the respective locations. The datasets are also used to calculate the 

mean total rainfall of each month across the years (e.g. mean rainfall in January from 1991-

2024), enabling us to identify seasonal rainfall patterns. 

2.2 Machine Learning Model 

To predict future weather conditions and their possible impacts on sensors’ performance, we 

tried out a few different ML models to identify one that is best suited to perform this job. 

Initially, we tested the Random Forest Regressor, a model known for its ensemble-based 

approach of combining multiple decision trees to reduce overfitting and improve predictive 

performance. However, Random Forests treat data as independent and do not explicitly consider 

sequential dependencies, which are crucial in time-series data like weather patterns. 

Additionally, the model struggled with capturing long-term temporal trends, making it less 

suitable for our objective of accurately predicting weather impacts on sensors. 

We also explored the Transformer model for time series forecasting. Although not originally 

intended to predict sequential data, the Transformer's positional encoding effectively retains 

temporal orders, allowing it to understand the sequential nature of time series. Furthermore, its 

self-attention mechanisms dynamically weigh the importance of different time steps, enabling 

the model to identify the most relevant weather patterns for its predictions. Also, the root mean 
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square error (RMSE) of our first trial was notably low at 1.17mm compared to the actual rainfall 

data. However, the training process was extremely slow. Thus, we concluded that the 

Transformer model was not a feasible option within the timeframe of our investigation. 

Finally, we settled on the XGBoost model, which constructs decision trees sequentially, with 

each tree attempting to correct the errors of its predecessors. This iterative approach enables the 

model to capture complex, non-linear relationships effectively. XGBoost is also computationally 

efficient for large datasets, leveraging optimisations like parallel processing and sparse data 

handling—particularly valuable for irregular rain data with many zero values. Its ability to model 

intricate dependencies and incrementally reduce errors made it a stronger candidate for our 

prediction model. Furthermore, XGBoost’s regularisation techniques help prevent overfitting, 

ensuring robustness even when training on datasets with complex weather patterns. 

Preparing the dataset is a crucial step for building an effective model that can uncover 

meaningful relationships. Weather data is inherently temporally dependent, as each observation 

is influenced by past weather conditions. Recognising this, we implemented three key 

preprocessing techniques to maximise the model’s ability to learn from the sequential nature of 

the data (Refer to Appendix 2B for the data preparation code). 

Firstly, we lagged each variable in the dataset over a 24-hour period, adding one lagged feature 

per hour to the training data. This allows the model to capture temporal dependencies by 

considering the influence of past weather variables on current conditions. 

Secondly, because time is a cyclical variable (e.g., December leads directly into January, and 

midnight transitions into a new morning), we employed sine-cosine normalisation. By 

transforming time-related variables into two components—sine and cosine—we ensured the 

model recognized these cyclical patterns, which enhanced its ability to identify seasonal trends 

and periodic behaviour. (Refer to Appendix 2C for implementation details.) 

Thirdly, we used the data to train a model to predict each variable in the future for each region. 

During the training process, we initially used K-Fold cross-validation to divide the data into 

eight separate folds, training a model on each fold to evaluate its generalisation across subsets of 

the data. However, we discovered that this approach was inappropriate for time-series data. K-

Fold cross-validation assumes independence between data points and can mix future data into 

training sets, neglecting the temporal order critical for time-series forecasting. To address this, 

we adopted Time Series Cross-Validation (TSCV), which ensures that training sets always 

precede validation sets in time. This approach preserves the temporal structure and prevents data 

leakage. Additionally, we introduced a 24-hour gap in our TSCV implementation between 

training and validation datasets to reduce the risk of overfitting on immediate temporal 

correlations. 

Our dataset used for the modelling includes hourly meteorological data collected from Ang Mo 

Kio Park, Changi, Jurong West, Sembawang and Sentosa. The data spans from January 1, 1991 

(12am) to November 30, 2024 (11pm) and includes the following variables [22]: 

1. Temperature (°C) [2m] - Air temperature at 2 metres above ground 

2. Relative humidity (%) [2m] - Relative humidity at 2 metres above ground 
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3. Dew point (°C) [2m] - Dew point temperature at 2 metres above ground 

4. Total rainfall (mm) - Liquid precipitation of the preceding hour including local showers 

and rain from large scale systems 

5. Surface pressure (hPa) - Pressure on mean sea level 

6. Cloud cover (%) - Total cloud cover as an area fraction 

7. Cloud cover low (%) - Low level clouds and fog up to 3 km altitude 

8. Cloud cover mid (%) - Mid level clouds from 3 to 8 km altitude 

9. Cloud cover high (%) - High level clouds from 8 km altitude 

10. Wind speed (km/h) [10m] - Wind speed at 10 metres above ground 

11. Wind speed (km/h) [100m] - Wind speed at 100 metres above ground 

12. Wind direction (°) [10m] - Wind direction at 10 metres above ground 

13. Wind direction (°) [100m] - Wind direction at 100 metres above ground 

Data from January 1, 1991 to December 31, 2019 (about 85% of the total), is used to train the 

model, while data from January 1, 2020 to November 31, 2024 (about 15% of the total), is used 

for testing the model. We used the different meteorological parameters in the dataset to predict 

future rainfall. 

3. RESULTS & DISCUSSION 

3.1 Analysis of Weather across different regions of Singapore 

After plotting various graphs to gain a deeper understanding on the weather patterns in Singapore 

over the last 3 decades, we sought to explain the trends we observed (Refer to Appendix 3A for 

rainfall and temperature graphs across the 5 locations of Singapore from 1981 January to 2024 

November). 

Monsoon Seasons 

 

Fig. 3.1.1 Graph of Average Monthly Rainfall (mm) Trend across Ang Mo Kio Park, Changi, 

Jurong West, Sembawang and Sentosa (1981 January - 2024 November) 

Within a year, the average monthly rainfall typically hits a peak in December; the lowest average 

monthly rainfall normally occurs in February. There is consistent rainfall throughout the year due 
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to Singapore's tropical climate. Singapore's climate also explains the peak and low average 

monthly rainfall experienced during December and February respectively. 

Singapore's climate is characterised by two monsoon seasons — the Northeast and Southwest 

Monsoons [23]. In Singapore, the effects of the Northeast Monsoon and Southwest Monsoon 

typically occur between December and early March, and between June and September 

respectively. During the Northeast Monsoon, from December to early January, Monsoon surges 

cause continuous, widespread moderate to heavy rain, which leads to the increased development 

of afternoon and early evening showers. On the other end of the spectrum, from late January to 

March (dry phase of Northeast Monsoon), Singapore typically experiences windy and relatively 

dry weather, with February being the driest month of the year on average. During the Southwest 

Monsoon, from June to September, short duration showers or thunderstorms in the afternoon are 

common, resulting in erratic weather patterns (Refer to Appendix 3B for the graph of the average 

mean temperature trend across months and the dual axis graph of the average monthly rainfall 

and mean temperature trend across months). 

The Walker Circulation and El Niño Southern Oscillation 

  

Fig. 3.1.2 Oceanic Niño Index (1990 - present) [24] 

Over the years, Singapore’s weather patterns have fluctuated due to the influence of the Walker 

Circulation, where trade wind directions change in line with the El Niño Southern Oscillation 

which occurs in the Pacific Ocean. When the Walker Circulation is in full force (La Niña 

conditions), pressure differences between landmasses on the West of the Pacific Ocean 

(Southeast Asia (SEA) and Australia) and on its East (the Americas) bring trade winds over the 

Pacific Ocean to SEA, resulting in heavier rainfall and lower temperatures during La Niña [25]. 

This is seen during the La Niña seasons from 1999 - 2000, 2007 - 2008 and late 2020 - 2021 

(Fig. 3.1.2), where Singapore experienced hikes in rainfall amounts and dips in monthly 

temperature. When oceanic currents reverse under El Niño conditions, trade winds weaken and 

sometimes change direction, bringing heavy rainfall to the Americas and drier, hotter weather to 

SEA and Australia. Singapore’s climate reflected these changes during strong El Niño 

conditions, as evidenced by the higher temperatures observed in 1997 and 2015 - 2016, and 

decrease in rainfall amounts in 1997 and early 1998. 
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Global Warming 

 

Fig. 3.1.3 Graph of Annual Average Temperature (°C) in Singapore from 1948 to 2023 [26] 

Generally, the annual average temperature in Singapore has shown an increasing trend from 

1948 to 2023. In Singapore, the annual average temperature has risen by an average of 0.25°C 

per decade between 1948 and 2023, which is about double the global trend of 0.12°C per decade 

between 1951 and 2012. The difference is likely due to rapid urbanisation in Singapore [27]. In 

1998 and 2016, a strong El Niño had played into causing a huge increase in annual average 

temperature compared to the years before the respective year. 

The general trend, while alarming, is not something that was unforeseeable, with many climate 

scientists and experts having pointed it out decades ago. The Enhanced Greenhouse Effect, 

driven by a massive increase in greenhouse gas emissions, has also exacerbated global warming, 

resulting in a rapid increase in not just Singapore's but the global annual average temperatures 

(Refer to Appendix 3C for more information regarding the Enhanced Greenhouse Effect and its 

impacts on Singapore's weather and sensors). 

Outliers in Rainfall Amounts 

The peak in rainfall seen across regions between December 2006 and January 2007, is attributed 

to Typhoon Utor which first struck the Philippines before moving Westward toward the rest of 

SEA [28] [29]. Particularly heavy rainfall and flooding was experienced throughout SEA, 

including most of Singapore (Refer to Appendix 3D for elaboration on other outliers). 

3.2 XGBoost Machine Learning Model 

 

Fig 3.2.1 Graphs of hourly rainfall prediction against actual hourly rainfall for 175 hours (east 

region) (Refer to Appendix 3E for more graphs regarding all regions) 
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The ML Model achieved a mean absolute error of 0.325mm and a root mean squared error of 

0.960mm with an accuracy of 79.8% across the 5 regions. 

From the graphs, it is evident that the predicted rainfall is very close to the true rainfall, and it 

can usually reliably predict the significant presence of rainfall accurately with the exception of 

some outliers due to the unpredictability of rain patterns. The RMSE, 0.960mm, is significantly 

lower than the previous investigation's RMSE which was 2.13mm [30] (Refer to Appendix 3F 

for code that checks accuracy of predictions). 

4. CONCLUSION & FUTURE WORK 

Of all the phenomena affecting rainfall, the Northeast monsoon has the greatest impact on 

Singapore’s weather, making December and January the wettest months of the year and 

February, the driest. The Walker Circulation and global warming, too, affect the amount of 

rainfall Singapore faces, with the Walker Circulation bringing general rises and falls to rainfall 

amounts, and global warming making weather impacts more severe in both wet and dry seasons. 

Our ML model, which can predict hourly rainfall amounts in Singapore’s various regions up to 

79.8% accuracy and a MAE of 0.325mm, can be used by the relevant agencies to estimate signal 

attenuation of sensors at any one point in time. To evaluate the signal attenuation of sensors in 

varying rain rates, we drew lines on a graph (Fig 1.3.1) [15] illustrating a LiDAR sensor’s 

maximum detection range under varying rain rates, specifically for those in Singapore. Although 

open-source graphs of RF sensor detection ranges under differing rain conditions were 

unavailable, a similar approach would be utilised to estimate signal attenuation of RF sensors. 

Since the model is rather accurate in predicting rainfall spikes, mitigating measures can be put in 

place pre-emptively to mitigate the impact of such signal attenuation, like installing 

complementary sensors and sensor settings to improve Signal to Noise ratios (SNR) for EW. 

Further studies on this topic could explore, in more detail, the impact of SNR degradation on 

sensor performance according to the various rainfall rates that Singapore experiences. Our ML 

model can also be trained by all parameters concurrently. Future work can also experiment with 

applying the same hyperparameters and normalisation to different models, to see if their root 

mean squared error is reduced by doing so. We also plan to utilise the ML model to predict the 

following day’s weather and countercheck with OpenMeteo to check its accuracy. Additionally, 

the ML model can be used to predict the amount of signal attenuation faced in Singapore. The 

difference in power loss between sensors over sea and over land may also be investigated, as 

maritime air masses have higher humidity than continental air masses [31]. 
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APPENDICES 

Appendix 1: Fundamentals of Radiofrequency 

RF is a range on the electromagnetic (EM) spectrum encompassing frequencies of 3 kilohertz 

(kHz) to 300 gigahertz (GHz). In most professional applications, calculations involving radio 

propagation are done in decibel (dB) form. 

To convert a linear number N to dB form, the following equation is used: 

𝑁(𝑑𝐵) = 10 log10𝑁 

And to convert a value in dB form back to linear, the equation is converted to exponential form: 

𝑁 = 10
𝑁(𝑑𝐵)

10  

Free Space Path Loss 

 

Fig. A1-1 Common dB Definitions 

The free-space path loss (FSPL) formula is derived from the Friis transmission formula [32]. 

This states that in a radio system consisting of a transmitting antenna transmitting radio waves to 

a receiving antenna, the ratio of radio wave power received 𝑃𝑟 to the power transmitted 𝑃𝑡 is: 

𝑃𝑟
𝑃𝑡

= 𝐷𝑡𝐷𝑟 (
𝜆

4𝜋𝑑
)
2

 

Where 

• 𝐷𝑡 is the directivity of the transmitting antenna 

• 𝐷𝑟 is the directivity of the receiving antenna 

• 𝜆  is the signal wavelength, and 

• 𝑑  is the distance between the antennas 

From the equation, as distance between the antennas increase, the power received by receiving 

antenna decreases. Additionally, the greater the directivity of either antenna, the lower the power 

loss. 
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Directivity 

The directivity of an antenna is the ratio of the maximum radiated intensity to the average 

radiated intensity of the antenna. A higher directivity suggests that the radiation pattern is 

strongly directional, which is advantageous for long-distance communication, as it maximizes 

the signal strength in the desired direction while minimizing it in others [33]. 

The directivity of an antennae is mathematically expressed as [34]: 

𝐷(𝜃, 𝜑) =
𝑈(𝜃, 𝜑)

𝑃𝑎𝑣𝑔
 

Where 

• 𝐷(𝜃, 𝜑) is the directivity of the antenna at angles 𝜃 (zenith angle) and 𝜑 (azimuth) 

• 𝑈(𝜃, 𝜑) is the radiation intensity of the antenna in a certain direction defined by angles 𝜃 and 

𝜑 , and 

• 𝑃𝑎𝑣𝑔 is the average power radiated by the antenna, which can be calculated by integrating 

the radiation intensity over all possible directions about the antenna 

 

Zenith angle and azimuth 

In a spherical coordinate system (Note: RF signals radiated by antennas propagate outward in a 

spherical manner), 𝜃 represents the zenith angle, while 𝜑 represents the azimuth. The zenith angle 

refers to the angle between the zenith of a spherical system and the direction (which can be 

represented with a line) which the RF signals propagate outward from an antenna while azimuth 

refers to the horizontal angle measured clockwise from a reference direction, often north on a 

plane. 

 

Fig. A1-2 Diagram of a spherical coordinate system 
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Calculating Directivity into decibel form 

Directivity can be expressed in decibel form for easier calculation, via: 

𝐷(𝑑𝐵) = 10 log10 [
𝐷

𝐷𝑟𝑒𝑓𝑒𝑟𝑒𝑛𝑐𝑒
]  

The reference antenna can be taken as a theoretical perfect isotropic radiator, which means it 

radiates uniformly in all directions, and hence has a directivity of 1. This would simplify the 

equation to: 

𝐷(𝑑𝐵) = 10 log10 𝐷 
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Appendix 2A: Collecting datasets from Open-Meteo.com 

Based on the sample code provided by Open-Meteo.com [22], we created the following code to 

collate the datasets for analysis and machine learning: 
#code which uses openmeteo api to get weather data 

 

import openmeteo_requests 

 

import requests_cache 

import pandas as pd 

from retry_requests import retry 

 

# Setup the Open-Meteo API client with cache and retry on error 

cache_session = requests_cache.CachedSession('.cache', expire_after = -1) 

retry_session = retry(cache_session, retries = 5, backoff_factor = 0.2) 

openmeteo = openmeteo_requests.Client(session = retry_session) 

 

# Make sure all required weather variables are listed here 

# The order of variables in hourly or daily is important to assign them correctly 

below 

url = "https://archive-api.open-meteo.com/v1/archive" 

params = { 

    "latitude": 1.4256, # Coordinates can be obtained by searching for a region 

in the site 

    "longitude": 103.8161, 

    "start_date": "1980-01-01", 

    "end_date": "2024-12-10", 

    "hourly": ["temperature_2m", "relative_humidity_2m", "dew_point_2m", "rain", 

"surface_pressure", "cloud_cover", "cloud_cover_low", "cloud_cover_mid", 

"cloud_cover_high", "wind_speed_10m", "wind_speed_100m", "wind_direction_10m", 

"wind_direction_100m"], 

    "timezone": "auto" 

} 

responses = openmeteo.weather_api(url, params=params) 

 

# Process first location. Add a for-loop for multiple locations or weather models 

response = responses[0] 

print(f"Coordinates {response.Latitude()}°N {response.Longitude()}°E") 

print(f"Elevation {response.Elevation()} m asl") 

print(f"Timezone {response.Timezone()} {response.TimezoneAbbreviation()}") 

print(f"Timezone difference to GMT+0 {response.UtcOffsetSeconds()} s") 

 

# Process hourly data. The order of variables needs to be the same as requested. 

https://archive-api.open-meteo.com/v1/archive
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hourly = response.Hourly() 

hourly_temperature_2m = hourly.Variables(0).ValuesAsNumpy() 

hourly_relative_humidity_2m = hourly.Variables(1).ValuesAsNumpy() 

hourly_dew_point_2m = hourly.Variables(2).ValuesAsNumpy() 

hourly_rain = hourly.Variables(3).ValuesAsNumpy() 

hourly_surface_pressure = hourly.Variables(4).ValuesAsNumpy() 

hourly_cloud_cover = hourly.Variables(5).ValuesAsNumpy() 

hourly_cloud_cover_low = hourly.Variables(6).ValuesAsNumpy() 

hourly_cloud_cover_mid = hourly.Variables(7).ValuesAsNumpy() 

hourly_cloud_cover_high = hourly.Variables(8).ValuesAsNumpy() 

hourly_wind_speed_10m = hourly.Variables(9).ValuesAsNumpy() 

hourly_wind_speed_100m = hourly.Variables(10).ValuesAsNumpy() 

hourly_wind_direction_10m = hourly.Variables(11).ValuesAsNumpy() 

hourly_wind_direction_100m = hourly.Variables(12).ValuesAsNumpy() 

 

hourly_data = {"date": pd.date_range( 

    start = pd.to_datetime(hourly.Time(), unit = "s", utc = True), 

    end = pd.to_datetime(hourly.TimeEnd(), unit = "s", utc = True), 

    freq = pd.Timedelta(seconds = hourly.Interval()), 

    inclusive = "left" 

)} 

hourly_data["temperature_2m"] = hourly_temperature_2m 

hourly_data["relative_humidity_2m"] = hourly_relative_humidity_2m 

hourly_data["dew_point_2m"] = hourly_dew_point_2m 

hourly_data["rain"] = hourly_rain 

hourly_data["surface_pressure"] = hourly_surface_pressure 

hourly_data["cloud_cover"] = hourly_cloud_cover 

hourly_data["cloud_cover_low"] = hourly_cloud_cover_low 

hourly_data["cloud_cover_mid"] = hourly_cloud_cover_mid 

hourly_data["cloud_cover_high"] = hourly_cloud_cover_high 

hourly_data["wind_speed_10m"] = hourly_wind_speed_10m 

hourly_data["wind_speed_100m"] = hourly_wind_speed_100m 

hourly_data["wind_direction_10m"] = hourly_wind_direction_10m 

hourly_data["wind_direction_100m"] = hourly_wind_direction_100m 

 

openmeteo_hourly_sembawang = pd.DataFrame(data = hourly_data) 

print(openmeteo_hourly_sembawang) # Variable name is changed dynamically 

# DataFrame is saved to csv files using the Data Wrangler extension 
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Appendix 2B: Data Preparation Code 
def load_region_data(region_files): 

    """ 

    Load weather data for different regions from CSV files. 

     

    Parameters: 

    ----------- 

    region_files : dict 

        Dictionary mapping region names to their respective CSV file paths 

     

    Returns: 

    -------- 

    dict 

        Dictionary of DataFrames for each region, indexed by date 

    """ 

    region_data = {} 

    for region, file_path in region_files.items(): 

        df = pd.read_csv(file_path, parse_dates=['date']) 

        df.set_index('date', inplace=True) 

        region_data[region] = df 

    return region_data 

 

# Define region files 

region_files = { 

    "central": "weather_data_hourly/openmeteo/openmeteo_hourly_amk_park.csv", 

    "east": "weather_data_hourly/openmeteo/openmeteo_hourly_changi.csv", 

    "west": "weather_data_hourly/openmeteo/openmeteo_hourly_jurong_west.csv", 

    "north": "weather_data_hourly/openmeteo/openmeteo_hourly_sembawang.csv", 

    "south": "weather_data_hourly/openmeteo/openmeteo_hourly_sentosa.csv", 

} 

 

region_data = load_region_data(region_files) 

 

# %% 

def add_cyclical_features(df:pd.DataFrame, datetime_column='date'): 

    """ 

    Add sine-cosine transformed cyclical features to the dataset. 

 

    Parameters: 

    - df (pd.DataFrame): DataFrame containing the datetime column. 

    - datetime_column (str): Name of the datetime column. 
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    Returns: 

    - pd.DataFrame: Updated DataFrame with cyclical features. 

    """ 

    df = df.copy() 

     

    if isinstance(df.index, pd.DatetimeIndex): 

        datetime_column = df.index 

    else: 

        df[datetime_column] = pd.to_datetime(df[datetime_column]) 

        datetime_column = df[datetime_column] 

 

    # Extract cyclical components 

    df['hour'] = datetime_column.hour 

    df['day_of_year'] = datetime_column.dayofyear 

    df['month'] = datetime_column.month 

     

    # Hour of the day (0-23) 

    df['hour_sin'] = np.sin(2 * np.pi * df['hour'] / 24) 

    df['hour_cos'] = np.cos(2 * np.pi * df['hour'] / 24) 

     

    # Day of the year (1-365/366) 

    df['day_of_year_sin'] = np.sin(2 * np.pi * df['day_of_year'] / 365) 

    df['day_of_year_cos'] = np.cos(2 * np.pi * df['day_of_year'] / 365) 

     

    # Month of the year (1-12) 

    df['month_sin'] = np.sin(2 * np.pi * df['month'] / 12) 

    df['month_cos'] = np.cos(2 * np.pi * df['month'] / 12) 

     

    df.drop(['hour', 'day_of_year', 'month'], axis=1, inplace=True) 

     

    return df 

 

for region in region_data.keys(): 

    region_data[region] = add_cyclical_features(region_data[region]) 

 

# %% 

def create_lagged_features(region_data, targets, lags=24): 

    """ 

    Create lagged features for specified targets, excluding sine-cosine columns 

from lagging. 

 

    Parameters: 
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    - region_data (dict): Dictionary of DataFrames for each region 

    - targets (list): List of column names to lag 

    - lags (int): Number of lagged steps to create 

 

    Returns: 

    - dict: Dictionary of DataFrames with lagged features for each region 

    """ 

    sine_cosine_columns = ['hour_sin', 'hour_cos', 'day_of_year_sin', 

'day_of_year_cos', 'month_sin', 'month_cos'] 

    lagged_data = {} 

 

    for region, data in region_data.items(): 

        df = data.copy() 

 

        # Create the lagged features for the target columns 

        lagged_columns = {} 

        for target in targets: 

            if target not in sine_cosine_columns: 

                for lag in range(1, lags + 1): 

                    lagged_columns[f'{target}_lag_{lag}'] = df[target].shift(lag) 

 

        # Concatenate lagged features with the original DataFrame 

        lagged_df = pd.concat([df, pd.DataFrame(lagged_columns, index=df.index)], 

axis=1) 

         

        # Add cyclical features 

        # Directly add the sine-cosine columns to avoid creating a separate 

DataFrame 

        lagged_df[sine_cosine_columns] = df[sine_cosine_columns] 

 

        # Drop rows with NaN values after shifting 

        lagged_df.dropna(inplace=True) 

 

        lagged_data[region] = lagged_df 

 

    return lagged_data 

 

# Define targets and regions 

targets = ["temperature_2m", "relative_humidity_2m", "dew_point_2m", 

           "rain", "surface_pressure", "cloud_cover", "cloud_cover_low", 

           "cloud_cover_mid", "cloud_cover_high", "wind_speed_10m", 

           "wind_speed_100m", "wind_direction_10m", "wind_direction_100m"] 
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# Call the function 

lagged_region_data = create_lagged_features(region_data, targets, lags=24) 

regions = list(lagged_region_data.keys()) 

 

# %% 

def prepare_regional_model_data(lagged_region_data,  

                                 target_region,  

                                 train_start='1991-01-01',  

                                 train_end='2019-12-31', 

                                 test_start='2023-01-01',  

                                 test_end='2024-12-31', 

                                 ood_start='2020-01-01',  

                                 ood_end='2022-12-31'): 

    """ 

    Prepare training, testing, and out-of-distribution data for a specific 

region's XGBoost model. 

     

    Parameters: 

    - lagged_region_data (dict): Dictionary of DataFrames with lagged features 

for each region 

    - target_region (str): The region for which the model is being prepared 

     

    Returns: 

    - Dictionary containing X_train, y_train, X_test, y_test, X_ood, y_ood 

    """ 

    # Targets to predict (current data columns) 

    targets = ["temperature_2m","relative_humidity_2m","dew_point_2m", 

               "rain","surface_pressure","cloud_cover","cloud_cover_low", 

               "cloud_cover_mid","cloud_cover_high","wind_speed_10m", 

               "wind_speed_100m","wind_direction_10m","wind_direction_100m"] 

     

    sine_cosine_columns = ['hour_sin', 'hour_cos', 'day_of_year_sin', 

'day_of_year_cos', 'month_sin', 'month_cos'] 

     

    target_df = lagged_region_data[target_region] 

     

    train_mask = (target_df.index >= train_start) & (target_df.index <= 

train_end) 

    test_mask = (target_df.index >= test_start) & (target_df.index <= test_end) 

    ood_mask = (target_df.index >= ood_start) & (target_df.index <= ood_end) 

 

    def prepare_data_for_region(mask): 
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        y_data = target_df.loc[mask, targets] 

         

        X_data_list = [] 

        for region, region_df in lagged_region_data.items(): 

            # Debug: Check if the data is empty after masking 

            print(f"Preparing data for region: {region}") 

            region_subset = region_df.loc[mask] 

             

            if region_subset.empty: 

                print(f"Warning: Data for {region} is empty after masking.") 

             

            # Ensure columns exist 

            lagged_columns = [col for col in region_subset.columns if '_lag_' in 

col] 

            if not lagged_columns: 

                print(f"Warning: No lagged columns found for {region}.") 

             

            region_lagged_data = region_subset[lagged_columns].copy() 

             

            # Rename columns to include region prefix 

            region_lagged_data.columns = [f'{region}_{col}' for col in 

region_lagged_data.columns] 

             

            X_data_list.append(region_lagged_data) 

         

        # Concatenate all lagged data 

        X_data = pd.concat(X_data_list, axis=1) 

 

        # Add normalised date/time columns 

        sine_cosine_data = region_subset[sine_cosine_columns].copy() 

        X_data = pd.concat([X_data, sine_cosine_data], axis=1) 

         

        # Debug: Check data size before returning 

        print(f"X_data shape: {X_data.shape}, y_data shape: {y_data.shape}") 

         

        return X_data, y_data 

 

    # Prepare the data for train, test, and ood sets 

    X_train, y_train = prepare_data_for_region(train_mask) 

    X_test, y_test = prepare_data_for_region(test_mask) 

    X_ood, y_ood = prepare_data_for_region(ood_mask) 
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    return { 

        'X_train': X_train, 

        'y_train': y_train, 

        'X_test': X_test, 

        'y_test': y_test, 

        'X_ood': X_ood, 

        'y_ood': y_ood 

    } 

 

# Example of preparing data for a specific region 

regional_data = {} 

for region in regions: 

    regional_data[region] = prepare_regional_model_data(lagged_region_data, 

region) 
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Appendix 2C: XGBoost Model Training Code 
def train_xgboost_model_with_tscv(X, y, n_splits=8, target_column=None): 

    """ 

    Train an XGBoost model using Time Series Cross-Validation. 

     

    Parameters: 

    - X (pd.DataFrame): Input features 

    - y (pd.DataFrame): Target values 

    - n_splits (int): Number of splits for time series cross-validation 

    - target_column (str, optional): Specific target column to predict. 

                                     If None, trains a model for each target. 

     

    Returns: 

    - Dictionary of trained models, cross-validation results, and overall 

performance 

    """ 

    if target_column is None: 

        models = {} 

        cv_results = {} 

        for target in y.columns: 

            print(f"Training for {target}...") 

            result = train_xgboost_model_with_tscv(X, y[target], n_splits, 

target) 

            models[target] = result['model'] 

            cv_results[target] = result['cv_results'] 

        return { 

            'models': models,  

            'cv_results': cv_results 

        } 

     

    tscv = TimeSeriesSplit(n_splits=n_splits, gap=24) 

     

    cv_scores_mse = [] 

    cv_scores_mae = [] 

    models = [] 

     

    for fold, (train_index, test_index) in enumerate(tscv.split(X), 1): 

        # Split the data 

        X_train, X_test = X.iloc[train_index], X.iloc[test_index] 

        y_train, y_test = y.iloc[train_index], y.iloc[test_index] 

         

        # Prepare the data for XGBoost 

        dtrain = xgb.DMatrix(X_train, label=y_train) 



 OFFICIAL (CLOSED)  

 

27 

OFFICIAL (CLOSED) 

 

        dtest = xgb.DMatrix(X_test, label=y_test) 

         

        # Define XGBoost parameters 

        params = { 

            'objective': 'reg:squarederror', 

            'eval_metric': 'rmse', 

            'learning_rate': 0.1, 

            'max_depth': 6, 

            'subsample': 0.8, 

            'colsample_bytree': 0.8, 

            'seed': 42, 

            'device': 'cuda' 

        } 

 

        model = xgb.train( 

            params, 

            dtrain, 

            num_boost_round=100, 

            evals=[(dtest, 'eval')], 

            early_stopping_rounds=10, 

            verbose_eval=False 

        ) 

         

        y_pred = model.predict(dtest) 

         

        mse = mean_squared_error(y_test, y_pred) 

        mae = mean_absolute_error(y_test, y_pred) 

         

        print(f"Fold {fold} - Train MSE: {mse:.6f}, Train MAE: {mae:.6f}") 

 

        # Store results 

        cv_scores_mse.append(mse) 

        cv_scores_mae.append(mae) 

        models.append(model) 

     

    # Compute average cross-validation scores 

    cv_results = { 

        'MSE': { 

            'scores': cv_scores_mse, 

            'mean': np.mean(cv_scores_mse), 

            'std': np.std(cv_scores_mse) 

        }, 

        'MAE': { 
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            'scores': cv_scores_mae, 

            'mean': np.mean(cv_scores_mae), 

            'std': np.std(cv_scores_mae) 

        } 

    } 

     

    # Train final model on entire dataset 

    final_model = xgb.train( 

        params, 

        xgb.DMatrix(X, label=y), 

        num_boost_round=100 

    ) 

     

    return { 

        'model': final_model, 

        'cv_results': cv_results 

    } 
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Appendix 3A: Monthly Total Rainfall and Mean Temperature Graphs 

Sembawang (North) 

 

Fig. A3A-1 Graph of Monthly Total Rainfall (mm) and Rainfall 12 Months Rolling Average 

(mm) at Sembawang from 1981 January - 2024 November 

From the 1980s to 2010s, monthly total rainfall at Sembawang was quite consistent, with around 

200mm of rainfall per month, with some fluctuations and occasional spikes or dips. Over the past 

8 years, however, rainfall totals have been increasing, with total monthly rainfall consistently 

hovering above 250mm per month. This trend can be attributed to the exacerbation of global 

warming, resulting in wetter weather in Singapore [35] [36]. 



 OFFICIAL (CLOSED)  

 

30 

OFFICIAL (CLOSED) 

 

 

Fig. A3A-2 Graph of Monthly Mean Temperature (°C) and Mean Temperature 12 Months 

Rolling Average (°C) at Sembawang from 1981 January - 2024 November 

Since the 1980s, temperatures at Sembawang have been fluctuating between 25°C and 28°C, but 

there is not an obvious general increasing or decreasing trend. Temperatures typically drop to a 

low during the first and final few months of the years, which is largely due to the Northeast 

Monsoon, and rise to a peak in the middle (around May and June). El Niño and La Niña events 

also contribute to the fluctuations in temperature, with El Niño causing slightly higher 

temperatures, and La Niña causing slightly lower temperatures than average. 
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Sentosa (South) 

 

Fig. A3A-3 Graph of Monthly Total Rainfall (mm) and Rainfall 12 Months Rolling Average 

(mm) at Sentosa from 1981 January - 2024 November 

Since the 1980s, monthly total rainfall at Sentosa has remained consistent, typically ranging 

between 100mm and 400mm, with only occasional spikes and dips caused by environmental 

factors such as typhoon remnants, monsoon surges, El Niño or La Niña events. Monthly total 

rainfall typically peaks from November to January, but that is not always the case, due to the 

volatility aforementioned factors. 
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Fig. A3A-4 Graph of Monthly Mean Temperature (°C) and Mean Temperature 12 Months 

Rolling Average (°C) at Sentosa from 1981 January - 2024 November 

From the 1980s to 2010s, temperatures at Sentosa fluctuated between 25°C and 28°C, and there 

is no clear increasing or decreasing trend. Over the past 8 years, mean temperatures have been 

steadily increasing, with temperatures hitting over 28.5°C and consistently staying above 26°C. 

This is largely thanks to the exacerbation of global warming, resulting in rising temperatures. 

Temperatures reach a peak during the middle of the year from May to July and typically reach a 

low from December to January. 
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Changi (East) 

 

Fig. A3A-5 Graph of Monthly Total Rainfall (mm) and Rainfall 12 Months Rolling Average 

(mm) at Changi from 1981 January - 2024 November 

Since the 1980s, monthly rainfall totals have been very consistent at Changi, ranging between 

100mm and 400mm, with some variation due to environmental factors, such as typhoon 

remnants, monsoon surges, El Niño or La Niña events. Monthly total rainfall typically peaks 

from November to January, but that is not always the case, due to the volatility of the 

aforementioned factors. 
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Fig. A3A-6 Graph of Monthly Mean Temperature (°C) and Mean Temperature 12 Months 

Rolling Average (°C) at Changi from 1981 January - 2024 November 

From the 1980s to 2010s, monthly mean temperatures at Changi fluctuated between 25°C and 

28°C, with significant variations during strong El Niño events, such as 1998 to 1999 and 2009 to 

2010. Over the past 8 years, however, temperatures have been rising, with a notable spike in the 

last 2 years. Monthly mean temperatures now consistently exceed 26°C, reaching record highs at 

Changi not seen in the past 44 years. 
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Jurong West (West) 

 

Fig. A3A-7 Graph of Monthly Total Rainfall (mm) and Rainfall 12 Months Rolling Average 

(mm) at Jurong West from 1981 January - 2024 November 

Since the 1980s, monthly rainfall totals at Jurong West have remained quite consistent. However, 

over the past 3 years, an increasing trend has emerged. It is uncertain whether this trend will 

persist, or if it is a temporary variation caused merely by environmental factors, such as typhoon 

remnants, monsoon surges, or El Niño events. Monthly total rainfall typically peaks from 

November to January, but that is not always the case, due to the volatility of the aforementioned 

factors.   
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Fig. A3A-8 Graph of Monthly Mean Temperature (°C) and Mean Temperature 12 Months 

Rolling Average (°C) at Jurong West from 1981 January - 2024 November 

From the 1990s to the present, monthly mean temperatures at Jurong West have generally 

increased, with temperatures ranging from 25°C to 27.5°C in the past, and temperatures ranging 

from 25.5°C to 28°C in the present. This is a 0.5°C increase in monthly mean temperatures on 

average. 
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Ang Mo Kio Park (Central) 

 

Fig. A3A-9 Graph of Monthly Total Rainfall (mm) and Rainfall 12 Months Rolling Average 

(mm) at Ang Mo Kio Park from 1981 January - 2024 November 

Since the 1980s, monthly rainfall totals at Ang Mo Kio Park have been very consistent, typically 

ranging between 100 and 400mm, with some variation due to environmental factors, such as 

typhoon remnants, monsoon surges, El Niño or La Niña events. Monthly total rainfall typically 

peaks from November to January, but that is not always the case, due to the volatility of the 

aforementioned factors. 
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Fig. A3A-10 Graph of Monthly Mean Temperature (°C) and Mean Temperature 12 Months 

Rolling Average (°C) at Ang Mo Kio Park from 1981 January - 2024 November 

From 1980s to the present, monthly mean temperatures at Ang Mo Kio Park have generally 

increased, with large increases in the last 8 years. This can be attributed to global warming, 

which has caused rising temperatures all across the world. Another possible factor that has 

contributed to the rise is El Niño events. Temperatures typically reach a peak during the middle 

of the year from May to July and typically reach a low from December to January. 
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Appendix 3B: Average Monthly Rainfall and Mean Temperature Trend Graphs 

Just as the average monthly rainfall trends are plotted, the mean temperature trends across the 

months are too for the same span of time (1981 January - 2024 November). A dual axis graph of 

the average rainfall and mean temperature trends is plotted, to help identify possible correlation 

between the two different variables. 

 

Fig. A3B-1 Graph of Mean Temperature (°C) Trend across Ang Mo Kio Park, Changi, Jurong 

West, Sembawang and Sentosa (1981 January - 2024 November) 

During the Northeast Monsoon (from December to early March), temperatures are slightly lower 

compared to the other months of the year, primarily due to monsoon surges that bring cooler air 

from the northern hemisphere to Singapore. In contrast, during the Southwest Monsoon (from 

June to September), especially between July and September, there is minimal variation in 

temperature, as fewer external wind patterns impact Singapore. Singapore's tropical climate, 

characterised by consistent solar radiation and high humidity, results in minimal seasonal 

temperature variation, except when influenced by external factors like monsoon surges. 
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Fig. A3B-2 Dual axis graph of Average Monthly Rainfall (mm) and Mean Temperature (°C) 

Trends across Ang Mo Kio Park, Changi, Jurong West, Sembawang and Sentosa (1981 January - 

2024 November) 

Generally, when the mean temperature is lower, the average rainfall is higher, and vice versa. 

However, there are exceptions, due to the Southwest Monsoon affecting rainfall and temperature 

between June to September. Additionally, Singapore experiences a tropical climate, and hence, 

has consistently warm temperatures and minimal seasonal variation, thus the average rainfall 

from March to September is rather consistent. 
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Appendix 3C: Enhanced Greenhouse Effect and its impacts on Singapore's weather and 

sensors 

The Greenhouse Effect is the process by which thermal energy is trapped near Earth's surface by 

greenhouse gases, such as carbon dioxide, nitrous oxide, and methane, which helps to maintain a 

warmer surface temperature than would otherwise occur [37]. The Enhanced Greenhouse Effect 

occurs when the production of greenhouse gases largely exceeds their depletion, leading to rising 

global temperatures. 

In Singapore, a rise in temperature would increase the rate of evaporation, which would in turn 

speed up the water cycle. More water vapour would enter the atmosphere which could lead to 

more precipitation. A 2°C increase in temperature is predicted to make heavy rain events 1.7 

times more likely, and 14% more intense [38]. This could increase Singapore's monthly total 

rainfall by a substantial amount. 

Additionally, an increase in atmospheric water vapour could also result in more clouds being 

formed; however, scientists have yet to determine the influence of these clouds on Singapore's 

climate. 

As the amount of rainfall increases, sensors in Singapore face higher risk of being affected by 

attenuation. This will most likely hinder the effectiveness of sensors, especially those working on 

radiofrequencies of 10GHz and higher. On the other hand, temperature changes have minimal, if 

any, impact on the transmission of radiofrequencies 
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Appendix 3D: Examining Anomalous Data 

1982 December 

There was a significant jump in rainfall in this month across all the regions in Singapore, likely 

due to the Northeast Monsoon. 

1987 December 

This month saw the highest amount of rainfall for Changi (East), but not in the other regions. An 

article from The Straits Times on 7th December this year confirms that the East Coast of Johor 

was facing flooding this month, stating that Malaysia's Meteorological Department warned of its 

flooding throughout the month until the next January [39]. Since Johor is just North of 

Singapore, it can be assumed that rainfall amounts in Singapore were similarly high. 

1991 November-December 

These two months saw one of the highest amounts of rain in our data timeframe. While it was 

not record-breaking, newspaper reports published by The Straits Times in this month mentioned 

flooding in Singapore as well. This was likely exacerbated by the Northeast Monsoon during 

these months. 

1997 January 

1997 was, at the time, said to be Singapore’s hottest, driest year on record, with a mean 

temperature of 28.2°C [40]. This can be seen in Singapore’s rainfall in January 1997, which was 

in the driest three months from 1981-2024. On top of January being right before the dry phase of 

the Northeast Monsoon that year, a very strong El Niño hit in 1997, bringing especially dry 

weather to Singapore. 

2005 February (all regions) 

The February of 2005, while not as dry as January 1997, is also among the driest months in 

Singapore’s history. Also, in the dry phase of the Northeast Monsoon, it is expected that this 

month would hold some of Singapore’s lowest rainfall amounts. However, the leading cause of 

its lack of rainfall was likely the dry spell that overcame Singapore in 2005, which is said to have 

lasted 40 days from January to February 2005 [41]. 

2006 December to 2007 January 

From 2006 December to 2007 January, Singapore saw an abnormally high amount of rainfall of 

up to 350 mm. This was attributed to Typhoon Utor, a category 3 typhoon, which also caused 

floodings within Southeast Asia. These rain conditions also caused a significant decrease in 

temperature, with temperatures falling to 25°C. This typhoon occurred during the 2006 Pacific 

typhoon season which correspond to the period of greatest frequency for the formation of 

typhoons [42]. 
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2014 February 

This month was hit by a record-breaking dry spell, becoming the second driest calendar month in 

Singapore’s history [41]. It is also in the dry phase of the Northeast Monsoon and is the driest 

month from 1981-2024 within the five selected regions. 

2020 June 

June 2020 was the second coolest June in two decades, and the wettest in a decade [43]. This is 

attributed to a moderate La Niña phenomenon during the year, and frequent Sumatra Squalls 

bringing early morning rain to the country. It has also been suggested that this was exacerbated 

by climate change, which has been increasing the severity of extreme weather events. 

2021 February 

This month was Singapore’s second driest February [44]. According to our plotted graphs, it was 

the third driest month from 1981 to 2024.  

2024 January 

Across Singapore, the total rainfall was higher than average in January this year; the first 

fortnight saw a total rainfall that was 184% higher than average in Kranji [45], and generally 

heavy rain over the whole island. The month of January is near the end of the Northeast 

Monsoon, seeing a lot of rain every year. 

2024 November (most regions) 

As usual, the Northeast Monsoon brings significantly high total rainfall to Singapore, as seen in 

these months being some of the highest in the graphs, across all five regions. According to NEA, 

the latter half of November saw 185% above average total rainfall in Admiralty and Pasir Ris 

[46]. 
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Appendix 3E: Graphs of hourly rainfall prediction 

 
Fig. A3E-1 Graphs of hourly rainfall prediction against actual hourly rainfall for 175 hours, by 

region 
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Appendix 3F: Accuracy of Predictions 

# Focus only on rain predictions for out-of-distribution data 

 

plt.figure(figsize=(20, 4*len(regional_models))) 

plt.suptitle('Out-of-Distribution Rain Predictions Across Regions', fontsize=16) 

 

for region_idx, (region, region_data) in enumerate(regional_models.items()): 

   X_ood = region_data['original_data']['X_ood'] 

   y_ood = region_data['original_data']['y_ood'] 

    

   # Randomly select a 1-week period 

   start_idx = random.randint(0, len(X_ood) - 1750)  # 168 hours in a week 

   end_idx = start_idx + 1750 

    

   X_ood_subset = X_ood.iloc[start_idx:end_idx] 

   y_ood_subset = y_ood.iloc[start_idx:end_idx] 

    

   # Create subplot for rain prediction 

   plt.subplot(len(regional_models), 1, region_idx + 1) 

    

   # Get rain model and make predictions 

   rain_model = region_data['results']['models']['rain'] 

   dood = xgb.DMatrix(X_ood_subset) 

   y_pred = rain_model.predict(dood) 

    

   # Plot true vs predicted rain 

   plt.plot(y_ood_subset['rain'].values, label='True Rain', color='blue') 

   plt.plot(y_pred, label='Predicted Rain', color='red', linestyle='--') 

    

   plt.title(f'{region} - Rain Prediction') 

   plt.xlabel('Time (hours)') 

   plt.ylabel('Rain Amount') 

   plt.legend() 

    

   mse = np.mean((y_ood_subset['rain'].values - y_pred)**2) 

   mae = np.mean(np.abs(y_ood_subset['rain'].values - y_pred)) 

   plt.text(0.02, 0.95, f'MSE: {mse:.4f}\nMAE: {mae:.4f}',  

           transform=plt.gca().transAxes, verticalalignment='top',  

           bbox=dict(boxstyle='round', facecolor='white', alpha=0.5)) 

 

# Adjust layout 

plt.tight_layout() 
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plt.subplots_adjust(top=0.9)  # Adjust for suptitle 

 

plt.show() 

 

print("\nDetailed Rain Prediction Metrics:") 

for region, region_data in regional_models.items(): 

   print(f"\nRegion: {region}") 

    

   X_ood = region_data['original_data']['X_ood'] 

   y_ood = region_data['original_data']['y_ood'] 

    

   # Randomly select a 1-week period 

   start_idx = random.randint(0, len(X_ood) - 1750) 

   end_idx = start_idx + 1750 

    

   X_ood_subset = X_ood.iloc[start_idx:end_idx] 

   y_ood_subset = y_ood.iloc[start_idx:end_idx] 

    

   # Focus only on rain prediction 

   rain_model = region_data['results']['models']['rain'] 

   dood = xgb.DMatrix(X_ood_subset) 

   y_pred = rain_model.predict(dood) 

    

   print("  Rain Target:") 

   print(f"    MSE: {np.mean((y_ood_subset['rain'].values - y_pred)**2):.4f}") 

   print(f"    RMSE: {np.sqrt(np.mean((y_ood_subset['rain'].values - 

y_pred)**2)):.4f}") 

   print(f"    MAE: {np.mean(np.abs(y_ood_subset['rain'].values - y_pred)):.4f}") 

   print(f"    Correlation: {np.corrcoef(y_ood_subset['rain'].values, y_pred)[0, 

1]:.4f}") 

 

 

 


